
Practical Session 1
David Barron

Hilary Term 2018

Introduction to R

This is a brief introduction to basic R use. The document is also available at http://users.ox.ac.uk/~jesu0073/.

Arithmetic operators

All the basic arithmetic operators work as you would expect:
2 + 3

[1] 5
5 - 3

[1] 2
4 * 9

[1] 36
8/2

[1] 4
2^3

[1] 8
7%%3

[1] 1
7%/%3

[1] 2

The last two may be a little less familiar: they are called the modulus and integer division, respectively.

Assignment to variables

There are two assignment operators, <- and =. The advantage of the latter is that it only takes one key
stroke (and it may be natural to you if you use other programming languages). The advantage of the former
is that it makes your code easier to read, as = is used for other purposes as well. Most R coders recommend
the use of <-.
x <- 4
x

[1] 4
y <- 4 * 5
y

[1] 20

1

http://users.ox.ac.uk/~jesu0073/

x + y

[1] 24

Data types

The basic data type is the vector. A single number is just a vector of length 1. Vectors can store numbers
(either integers or decimals), character strings, or TRUE/FALSE values. The simplest way to create a vector is
using the concatenation operator, c:
a <- c(2, 4, 6)
mode(a)

[1] "numeric"
b <- c("two", "four", "six")
mode(b)

[1] "character"
c <- c(TRUE, FALSE, TRUE)
mode(c)

[1] "logical"
c(a, b)

[1] "2" "4" "6" "two" "four" "six"
c(a, c)

[1] 2 4 6 1 0 1

You will notice that the last two cases involve coercion. In a vector, all the values have to be of the same
mode, so if you attempt to join to vectors with different modes, one is coerced to the type of the other. The
rule is that the most “general” mode wins. For example, you can represent numbers as characters, and logical
values as 0 or 1.

Matrices, lists and data frames

There are four other classes of data type that you are likely to come across. This is a summary:

Class Characteristics Dimensions
Vector All components have the same mode 1
Matrix A set of vectors of the same mode and length 2
Data frame A set of vectors of the same length 2
List A set of objects of any mode or length

Examples:
print(m <- cbind(a, b, c)) # Matrix

a b c
[1,] "2" "two" "TRUE"
[2,] "4" "four" "FALSE"
[3,] "6" "six" "TRUE"

2

print(d <- data.frame(a, b, c)) # Data frame

a b c
1 2 two TRUE
2 4 four FALSE
3 6 six TRUE
print(l <- list(a, b, c)) # List

[[1]]
[1] 2 4 6

[[2]]
[1] "two" "four" "six"

[[3]]
[1] TRUE FALSE TRUE

To begin with you are most likely to use data frames (as these are passed to the functions used to actually do
statistics!). Lists are often used by these functions to store output if you need to do more than just look at
the printed output. (A data frame might look like a sort of matrix, but actually it is a sort of list.)

Notice that the data frame has added names at the top of the column (by default the names of the vectors,
but this can be over-ridden as we’ll see in a minute). It is natural to think of the columns as variables (and
hence these are variable names) and the rows as observations.

Selecting components of data

Unlike some other statistical analysis systems, you work with multiple data sets at once. That saves a lot of
opening and closing of files, but it does make accessing components of data more difficult as you have to tell
R not just the same of a variable, but also the data frame in which that variable is located. There are a
number of ways of doing this:

1. Indexing You can specify the content of any component of a data frame (or matrix or vector) by using
the row and/or column index in square brackets:

d[1, 1]

[1] 2
d[, 1]

[1] 2 4 6
d[3,]

a b c
3 6 six TRUE
d[1:2,]

a b c
1 2 two TRUE
2 4 four FALSE
d[, c(1, 3)]

a c
1 2 TRUE

3

2 4 FALSE
3 6 TRUE
a[3]

[1] 6

Notice that you can specify all the cases in one dimension simply by leaving it blank. So the second example
above shows all the rows for one variable while the second shows all the columns (variables) for one observation.
You can select multiple rows and/or columns by using the : operator, which is a short cut to specify a
sequence of integers (e.g., 1, 2, 3) or a vector, as in the fifth example above. Indexing a vector is done in the
same way, but there is no comma as there is only one dimension.

2. Naming You can select columns (variables) by name in two ways:
d[, "a"]

[1] 2 4 6
d$a

[1] 2 4 6
d[, c("b", "c")]

b c
1 two TRUE
2 four FALSE
3 six TRUE

Using the $ operator is more convenient for selecting a single variable; the other method is more flexible as
you can select more than one variable at a time.

3. Using the with or transform functions
a.sq <- with(d, a^2)
d # Doesn't change d, can add it explicitly

a b c
1 2 two TRUE
2 4 four FALSE
3 6 six TRUE
d$as.sq <- a.sq

d <- transform(d, a.squared = a^2)
d

a b c as.sq a.squared
1 2 two TRUE 4 4
2 4 four FALSE 16 16
3 6 six TRUE 36 36

Notice that, although tranform does add a new variable, you have to explicitly assign this to a name to store
it permanently. You can either overwrite the existing data frame or create a new one.

4. Use the attach function This makes the variable names temporarily available as if they were separate
vectors.

attach(d)

The following objects are masked _by_ .GlobalEnv:

4

a, b, c
log(a)

[1] 0.6931472 1.3862944 1.7917595
detach(d)

The advantage of the attach function is you can then work with variable names in a way that might seem
natural to you, but it can be risky if there is more than one object with the same names. It is also easy to
forget to detach it. I generally avoid this method in favour of either 2 or 3.

Functions

We’ve already seen some functions (e.g., log, transform). Functions are what do the hard work in R,
particularly the ones that have been written to do statistical analyses like regression. The function is always
followed by (), inside which are given the arguments: the pieces of data or information R needs for the
function to work. Here are some useful functions for taking an initial look at some data.
head(mtcars) # The first 6 rows of data

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
tail(mtcars, 10) # The last 10 rows of data

mpg cyl disp hp drat wt qsec vs am gear carb
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
summary(mtcars)

mpg cyl disp hp
Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
Median :19.20 Median :6.000 Median :196.3 Median :123.0
Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0

drat wt qsec vs
Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000
1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000
Median :3.695 Median :3.325 Median :17.71 Median :0.0000
Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375

5

3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000

am gear carb
Min. :0.0000 Min. :3.000 Min. :1.000
1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
Median :0.0000 Median :4.000 Median :2.000
Mean :0.4062 Mean :3.688 Mean :2.812
3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
Max. :1.0000 Max. :5.000 Max. :8.000

And here are some useful functions for getting descriptive statistics:
mean(mtcars$mpg)

[1] 20.09062
sd(mtcars$mpg)

[1] 6.026948
table(mtcars$cyl)

4 6 8
11 7 14

R has very powerful graphical capabilities. Here are some simple examples:
plot(mtcars$disp, mtcars$mpg) # scatter plot

100 200 300 400

10
15

20
25

30

mtcars$disp

m
tc

ar
s$

m
pg

6

hist(mtcars$wt) # histogram

Histogram of mtcars$wt

mtcars$wt

F
re

qu
en

cy

2 3 4 5

0
2

4
6

8

Missing values

It is very common for data to have some observations that are missing for some reason. In surveys, some
people might refuse to answer certain questions or just not know the answers, for example. Most statistical
packages have a special code for such cases, and in R that code is NA (which I guess stands for “not available”).
Be careful, though. Often when you obtain data from archives it uses special numbers to indicate missing
because it doesn’t want to rely on something specific to one package.

When data contains missing values, the default behaviour is for R to fail when you try to do a statistical
analysis. This is a good thing as you want to be warned that there are missing cases. However, usually you
will want to override this default, and you can do this by adding another argument to the function call:

To illustrate this, I’ll turn the first value in the mtcars data frame into NA:
mtcars.tmp <- mtcars
mtcars.tmp[1, 1] <- NA
mtcars.tmp[, 1]

[1] NA 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2
[15] 10.4 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4
[29] 15.8 19.7 15.0 21.4
mean(mtcars.tmp$mpg) # Fails

[1] NA

7

mean(mtcars.tmp$mpg, na.rm = TRUE) # Works!

[1] 20.06129
rm(mtcars.tmp)

The option here is na.rm (“NA remove”), which I set to TRUE. This then removes cases that are NA before
calculating the mean. To know what options are available for a function, you can look at its help page by
using the command ?mean or help('mean'). Accessing the built-in help is essential; there’s far too much to
remember!

Packages

Much of the power of R comes from packages written to perform numerous tasks. R ships with a number of
built in packages, others can be installed from within R. Once installed, they can easily be accessed. Below I
give an example of a package that enables files in various data formats to be uploaded into R.

Data import/export

We need to be able to read data stored on a computer into R, and also to save our work to disk. It is
straightforward to read data in a plain text format, including the very common .csv format. We can also use
the foreign package to read in data stored in a variety of data formats, such as STATA.
Load a .csv file
peru <- read.csv("C:\\Users\\dbarron\\Dropbox\\Advanced Quant\\PeruMicroWeek1.csv")

This installs the package from a website. If you haven't specified one,
you will be prompted to choose a repository. Any one will do.
install.packages('haven', repos='http://cran.rstudio.com') Then make the
package available
library(haven)

lfs <- read_dta("C:\\Users\\dbarron\\Dropbox\\Teaching\\MSc teaching\\Advanced Quant\\data\\lfs2002.dta")

write.csv(lfs, "C:\\Users\\dbarron\\Dropbox\\Teaching\\MSc teaching\\Advanced Quant\\data\\lfs2002.csv")

In these examples, notice the use of \\ in the strings that specify the location of the files to read. They are
required (or alternatively you can use /) because \ has a special meaning inside a string.

Linear regression

The function for carrying out linear regression is lm (for “linear model”). Have a look at the help first: ?lm.
You will see that the first argument that is required is a formula. This is the standard way of passing
information about a regression model to R functions. Most often you specify it as outcome variable ~
explanatory variable 1 + explanatory variable 2 + You can refer to the variable names in the
data frame because, as you can see, the next argument you have to pass is the name of the data frame. Here
is an example:
lm1 <- lm(mpg ~ cyl + wt, data = mtcars)
summary(lm1)

Call:
lm(formula = mpg ~ cyl + wt, data = mtcars)

8

Residuals:
Min 1Q Median 3Q Max

-4.2893 -1.5512 -0.4684 1.5743 6.1004

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 39.6863 1.7150 23.141 < 2e-16 ***
cyl -1.5078 0.4147 -3.636 0.001064 **
wt -3.1910 0.7569 -4.216 0.000222 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.568 on 29 degrees of freedom
Multiple R-squared: 0.8302, Adjusted R-squared: 0.8185
F-statistic: 70.91 on 2 and 29 DF, p-value: 6.809e-12

Homework

Data are in the data directory on Weblearn: https://weblearn.ox.ac.uk/x/MbYn1T.

1. Import the dataset PeruMicroWeek1.csv. Review the dataset by looking at its structure, header, and
summary.

2. Calculate the means and standard deviations of Average Loan Balance (avgloanbal) and Percentage of
Female Borrowers (femaleperc) in the dataset.

3. Plot a histogram of Average Loan Balance.
4. Plot Average Loan Balance vs Self Sufficiency Ratio (selfsuff). Note: The Self Sufficiency Ratio measures

how able a microfinance organization is to financially sustain its operations.
5. Run an OLS regression. Dependent variable: Self Sufficiency Ratio. Explanatory variables: Average

Loan Balance and Percentage of Female Borrowers. View a summary of the regression results. What is
the effect of the explanatory variables on an organization’s Self Sufficiency Ratio?

9

https://weblearn.ox.ac.uk/x/MbYn1T

	Introduction to R
	Arithmetic operators
	Assignment to variables
	Data types
	Matrices, lists and data frames
	Selecting components of data
	Functions
	Missing values
	Packages
	Data import/export
	Linear regression

	Homework

